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ABSTRACT
This paper describes and evaluates three methods for coordinating multiple
agents.  These agents interact in two ways.  First, they are able to work together
to achieve a common pool of goals which would require greater time to achieve
by any one of the agents operating independently.  Second, the agents share
resources that are required by the actions needed to accomplish the goals.  The
first coordination method described is a centralized scheme in which all of the
coordination is done at a central location and the agents have no autonomy at the
planning level.  The second method performs goal allocation using a centralized
heuristic planner and (distributed) planners for the individual agents perform
detailed planning.  The third method uses a contract net protocol to allocate goals
and then (distributed) planners for the individual agents perform detailed
planning.  We compare these approaches and empirically evaluate them using a
geological science scenario in which multiple rovers are used to sample spectra
of rocks on Mars
KEYWORDS: Multi-agent communication coordination, and
collaboration, multi-agent teams

INTRODUCTION
Significant events have recently taken place in the areas of space exploration by planetary
rovers. The Mars Pathfinder and Sojourner missions were major successes, not only
demonstrating the feasibility of sending rovers to other planets, but also demonstrate the
utility of such missions to the scientific community.  Further missions are being planned
to send robotic vehicles to Mars (Mars01, Mars03, Mars05), an asteroid (MUSES-CN)
(JPL 1999) as well as the outer planets and their moons.  In order to increase science
return and enable new types of observations new missions are being proposed that
employ larger sets of robotic workers.  While it is up to mission designers to determine
the optimal number of rovers for a given mission, multiple rovers have three types of
advantages over single rover approaches: force multiplication, simultaneous presence and
system redundancy.
Force multiplication. Multiple rovers can perform certain types of tasks more quickly
than a single rover, such as: performing a geological survey of a region or deploying a
network of seismographic instruments. We call these cooperative tasks.
Simultaneous presence. Multiple rovers can perform tasks that are impossible for a single
rover. We call these coordinated tasks. Certain types of instruments, such as
interferometers, require simultaneous presence at different locations. Rovers landed at
different locations can cover areas with impassable boundaries. Using communication
relays, a line of rovers can reach longer distances without loss of contact. More
complicated coordinated tasks can also be accomplished, such as those involved in
hardware construction or repair.
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System redundancy. Multiple rovers can be used to enhance mission success through
increased system redundancy. Several rovers with the same capability may have higher
acceptable risk levels, allowing one rover, for example, to venture farther despite the
possibility of not returning.  Also, because designing a single rover to survive a harsh
environment for a long periods of time can be difficult, using multiple rovers may enable
missions that a single rover could not survive long enough to accomplish.
In all cases, the rovers can behave in a cooperative or even coordinated fashion, accepting
goals for the team, performing group tasks and sharing acquired information.

Whether they are spacecraft, probes or rovers, coordinating multiple distributed
agents introduces unique challenges for automated planning and other supporting
technology (Mataric 1995; Parker 1998). Issues arise concerning interfaces between
agents, communication bandwidth, group command and control, and onboard
capabilities.  For example, a certain level of communication capabilities will need to be
assigned to each, possibly limiting the amount of information that can be shared between
the rovers (and ground). The mission design will need to include a “chain of command”
for the team of spacecraft/rovers, indicating which rovers are controlled directly from the
ground, and which are controlled by other rovers or orbiting/landed spacecraft. Finally,
the onboard capabilities will need to be considered, including computing power and
onboard data storage capacity. This will limit the level of autonomy each of the rovers
can have.

In our approach, we examine the use of Artificial Intelligence (AI) planning and
scheduling in three different control structures to automatically generate appropriate low-
level rover command sequences to achieve science goals.   In the three approaches, we
explore a range of distribution of the planning function ranging from a completely
centralized planner to a bidding system in which the planning process occurs on each
rover in parallel.  Other approaches to multi-agent planning have various degrees of
distribution (Mataric 1995; Parker 1998; Hagopian, Maxwell, and Reed 1994; Cook,
Gmystrasiewicz and Holder 1996; Fischer et al. 1995; Müller 1996).

This rest of this paper is organized in the following manner. We begin by
characterizing the multiple cooperating rovers application domain and describe some of
the interesting challenges. Next, we introduce the ASPEN planning and scheduling
system and explain how automated planning and scheduling techniques can be applied to
this problem. We discuss several heuristics for solving the MTSP problem and present
some results on how they improve both system and final plan efficiency.  We then
discuss the overall framework that is used to achieve a set of geology related science
goals. Next, we discuss both how to extend this system to provide the long-term goal of
rover and spacecraft autonomy and how this extension compares with related efforts.
Finally, we present our conclusions and discuss several of the issues being addressed in
future work.

BASELINE SCENARIO

We evaluate the architectures presented in this paper using the following geological
scenario.   It takes three steps to produce a terrain model and a set of science goals over
that model. The first step creates different Martian rockscapes by using distributions over
rock types, sizes and locations. Science goals consist of requests to take spectral
measurements at certain locations or regions. These goals can be prioritized so if
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necessary, low priority goals will be deleted first.  Upon requesting spectral
measurements from this terrain during execution, rock and mineral spectral models define
how to generate sample spectra based on the type of rock being observed.

Science goals are generated from experiments using a (machine learning) clustering
algorithm that evaluates the current spectral data available for a particular landscape and
then determines new science goals to be achieved. Rather than sampling over the spatial
distribution of rocks, the clustering algorithm generates science goals (i.e. spectral
readings) that will best classify rock types.

In each architecture science goals are divided among three identical rovers.  Each
rover has several science instruments on board including a camera and a spectrometer.
Other onboard resources include a drive motor, a solar-array panel that provides power
for all rover activities, and a battery that provides backup power when no solar-array
power is available.  The battery can also be recharged using the solar-array when solar
power is not being used to capacity. Collected science data is immediately transmitted to
a lander where it is stored in memory.  The lander has a limited amount of memory and
can only receive transmissions from one rover at a time.  The lander can also upload data
(and simultaneously free up memory) to an orbiter whenever the orbiter is in view.

Formulating plans in this scenario involves dividing goals between rovers in a method
that minimizes the amount of driving each rover must perform.  Decisions must be made
not only to satisfy the requested goals, but also to provide more optimal schedules.  When
assigning a goal to a rover, the architecture must select the best rover for the job and
decide the order that each rover will achieve its assigned goals. These decisions are
further complicated by the state and resource constraints mentioned above.  For instance,
communication constraints between the rover and orbiter may affect when certain science
operations can be performed.  Low priority goals may also be deleted if a rover is unable
to achieve them due to temporal or resource constraints.
ASPEN Planner and MTSP Heuristics
All of our architectures require a planner/scheduler to turn abstract science goals into
concrete activity schedules, and we extend the ASPEN (Fukunaga et al. 1997) application
framework to satisfy this requirement. A plan/schedule is a particular configuration of
instances of the activity and resource types.  High-level science goals can be inserted into
the schedule and from these, the planner/scheduler must generate a plan that has all of
these problems resolved. ASPEN uses an “iterative repair” (Zweben et al 1994) technique
to achieve goals and resolve problems (called "conflicts") with the plan.

One of the dominating characteristics of the multi-rover application is the rover
traversals to designated waypoints. Decisions must be made not only to satisfy the
requested goals, but also to provide more optimal (i.e., efficient) schedules. When not
considering efficiency, one possible schedule that achieves all science goals is to send
one rover to every target location. However, usually this would not be the desired
behavior, and therefore some schedule optimization must be done. We have chosen to do
this optimization during the repair process. As certain types of conflicts are resolved,
heuristics are used to guide the search into making decisions that will produce more
optimal schedules. In other words, when several options are available for repairing a
conflict, these options are ordered based on predictions on how favorable the resulting
schedule will be.
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Figure 2.  Traveling Rovers
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The heuristics we have implemented are based
on techniques from the Multi-Traveling
Salesmen Problem (MTSP). The Traveling
Salesman Problem (TSP) (Johnson &
McGeoch 1997) is one of finding a minimal
tour for a salesman that needs to visit a
number of cities (and typically return home).
For MTSP, at least one member of a sales
team must visit each city such that total
traveling time is minimized. Salesmen are
allowed to travel in parallel with each other.
Many algorithms exist for solving both TSP

and MTSP problems. For a small number of locations
(N<10) optimal solutions can be found in a reasonable amount of time. However, for
larger sets of locations, finding optimal solutions is too expensive (NP-hard) and
approximate algorithms can be used (Hochbaum 1997). Greedy techniques can be used to
find near optimal solutions in polynomial time (O(N2)), where the resulting tour lengths
have been proven to be at most lgN+1 times the optimal length.  One such technique
involves taking unvisited locations and incrementally inserting each into an existing
planned tour between locations where it would cause the smallest increase in tour length.
We can easily extend this algorithm to multiple travelers. Unvisited locations are inserted
into any of the tours when looking for the shortest tour.
The multi-rover scenario fits naturally into the MTSP class of problems, with only a few
differences. First, the rovers are typically not required to return to their original locations
(however, for sample return missions, this would be necessary). This is a minor
difference and does not change the general problem1. Figure 2 shows three possible
insertions (one from each path) for a new location. Second, while planning activities for
multiple rovers, one is also be concerned with the earliest finish time (i.e., makespan) of
the schedule. The schedule with the minimum total path length (sum of rover path
lengths) may not necessarily be the schedule where all activities finish the earliest.
Reducing the total traverse time will reduce wear on the rovers, while reducing the
makespan will increase the available science time. Finally, generating command
sequences requires reasoning about more than just the paths of the rovers. Each rover has
a set of flight rules and a limited amount of resources. All commands, including
traverses, must be scheduled in a way that does not violate any of the flight rules or
resource constraints. Some of these constraints may inherently require sub-optimal travel
paths.
Many Architectures for Coordination
In the multi-rover application, activities and resources are modeled for the lander and
each of the rovers. The lander provides the communication link as well as temporary data
storage. Each rover has activities such as traversing, turning, taking images, taking
spectrometer readings, and digging. Each rover has its own resources such as battery
power, solar array power, and science instruments, and state variables representing
location and orientation.  If we let an ASPEN process execute on both the lander and

                                                                
1 We use the term “path” as opposed to “tour” to distinguish from traversals that return to the original location. Here, a path is a
traversal between science waypoints. We do not address path planning for the purpose of obstacle avoidance.
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each of the rovers, we have to decide how to distribute the model across the processes
and how to coordinate them.
While there are many approaches to coordinating a set of agents, the two most common
either treats them as a single master agent directing a set of slaves or treats them as a set
of competing peers.  Actually, these two architectures determine a whole spectrum of
architectures where a master agent gives its slaves progressively more autonomy.  In this
section we describe the two extreme approaches and an intermediate one.  In each case
the collection of ASPEN processes interact to follow the heuristics characterized by the
greedy insertion MTSP algorithm.  While the master can run on the ground, on an orbiter,
on a lander, or on one of the rovers, we simplify our presentation by always treat the
lander as a master with slave rovers.

Centralized Planning

The master/slave approach to automated planning for multiple agents involves using a
single centralized planner. As shown in Figure 3, planning and scheduling for all agents
is done with a single ASPEN process on the lander, this approach only needs one
planning model to represent the collection of activities, resources and constraints
associated with every agent. When planning is complete, the relevant sub-plans (i.e.,
command sequences) are transmitted to each “slave” rover for execution.

This approach has several advantages and disadvantages. One major advantage is
that the planning process is conceptually simplified. All commands are sequenced
together, allowing any interactions to be easily checked and planned for. Also, planning
tends to be computationally expensive and thus requires significant computational power
(e.g., a powerful processor).  Missions may have processing power available at one site,
but little at other sites (e.g., rovers). On the other hand, a centralized planner would be
less desirable for a mission with evenly distributed processing power.

A major disadvantage becomes visible when the rovers’ environment is somewhat
unpredictable.  Here the central planner will also have to monitor execution in order to
replan activities in response to unexpected failures or fortuitous events. This will involve
continuously transmitting large amounts of data to and from the master agent.  Finally,
this approach has a single point of failure. If the agent running the planner is rendered
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Figure 3: Multiple Coordination Methods
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inoperable, remote planning will not be possible, and command sequences will need to be
uploaded from the ground.

Central Goal Allocation with Distributed Planning

To support more advanced missions with multiple autonomous rovers, we need to
consider distributed planning (Estlin et al 1999). One approach to distributed planning is
to include one planner for each agent, in addition to a central planner. The central planner
develops an abstract plan for all agents, while each agent planner develops a detailed,
executable plan for its own activities. The central planner also acts as a router, taking a
global set of goals and dividing it up among the agents.  For example, a science goal may
request an image of a particular rock without concern for which rover acquires the image.
The central planner could assign this goal to the rover that is closest to the rock in order
to minimize the traversals of all rovers. When planning with shared resources, aggregate
resources are divided equally among the agents that use the resource. In other words, for
N agents, each agent models the resource with a capacity that is 1/N of the total capacity.
For atomic resources, the availability is time-sliced among the agents. Each agent has the
resource available for 1/N of the total time. This guarantees that the resulting set of plans
will not have conflicts, even among interacting activities.

This approach also has its advantages and disadvantages. The obvious advantage
is that the planning process is distributed across multiple processors. This reduces the
workload on any one agent and allows planning to be done in parallel. Another major
advantage is faster reaction time with less communications.  With a planner onboard the
rovers, there is a tight loop between planning and execution. This allows shorter turn-
around times from execution failures to command sequence updates, which in turn
decreases rover idle time.  Also, the rovers only have to transmit subsets of their status
information, and the central goal allocation planner only transmits smaller abstract plans
to the rovers.  The only time when the central goal allocation planner has to replan occurs
when a local planner runs into a situation that it cannot resolve.

The major disadvantage of this approach stems from the partitioning of goals and
resources from the master to the slaves. Once the goals have been assigned, there is no
way for them to be reassigned to different rovers. In addition, the equal division of shared
resources is an oversimplification. One rover may need a disproportionate amount of a
particular resource. This type of resource division limits the set of possible solutions,
possibly forcing plans to be sub-optimal.

Contract Net Protocol

At its extreme, migrating the planning/scheduling process onto the rovers leaves a central
auctioneer to distribute goals, and the rovers use planning/scheduling to determine
appropriate bids for each goal as it arises.  This approach is an instance of the contract
net protocol (Smith 1980, Sandholm 1993) – a commonly used coordination paradigm
within the distributed artificial intelligence community.  Within a contract net protocol, a
manager announces a task to a set of contractors, each contractor bids for it, and the
manager awards the task to the contractor with the best bid.

Our approach implements the greedy insertion MTSP algorithm using a contract net
protocol involves making the lander take abstract tasks and incrementally transmit them
to each rover.  Upon receiving a task, a rover uses an ASPEN process with the MTSP
heuristics to try to fit the task into its current schedule.  Upon succeeding, a rover bids the



Appears in the Proceedings of the World Automation Congress, Wailea, HI, 2000.

distance it would travel upon including the new task. Rovers that fail to insert the task
within a time limit do not participate in the auction.  Upon receiving all bids, the lander
awards the task to the rover with the smallest bid.  The rovers bid the total distance in
order to minimize the maximum distance traveled by any rover.  Bidding the incremental
distance would bias the system toward solutions that minimize the sum of the travel
distances.

This approach has many of the centralized goal allocation algorithm’s advantages and
disadvantages.  Once again, the planners on the rovers facilitate tight feedback between
planning and execution without high communications overhead, and partitioning the
shared resources on the lander leads to sub-optimal plans.  The one difference between
the decentralized planning approaches involves the information used to partition the
goals.  Where the previous approach ignored resources on the rovers and partitioned the
goals strictly based on expected path distances, the contract net approach partitioned
goals based on path distances after taking other rover resources into account.  This
change comes at the cost of each rover’s having to repair its schedule many more times in
order to compute intermediate path distances for partitioning.

COMPARISONS

The three approaches presented in this paper for coordinating multiple agents have a
number of functional differences.  In addition, these approaches were empirically
evaluated using a geological scenario for a number of different metrics.  In this section
we describe each of these metrics and present the empirical results gathered for each
approach.

Functional Comparison

One main functional difference between approaches is that both the distributed planning
approach and contract net approach can take advantage of parallel processing while the
centralized planning approach cannot.  For the distributed planner, once goals have been
allocated to the individual agents (rovers), their planners can run in parallel.  Similarly, in
the contract net approach, the bidding process can utilize parallel computation by the
individual planners to compute the cost of achieving an additional goal on each rover.

Another functional comparison is the number of communications required in each
direction (lander to rover (LR), rover to lander (RL)) for each planning cycle for N rovers
and G goals.  We presume that centralized computations are occurring on the lander.  The
centralized planning approach requires N RL and N LR communications for respectively
collecting the individual rover initial states and distributing the resultant plans.  The
distributed planning approach also requires N RL communications (to denote initial rover
locations) and N LR communications to distribute goal sets.  The contract net approach
requires G iterations, where each iteration consists N LR communications (to send out a
new goal) and N RL communications (to respond with a new plan cost).  Note that the
message sent for a complete plan (as required by the completely centralized approach) is
likely to be a longer message than for an initial state (as required by the centralized
approach) or goal set (as required by the distributed planning approach).  These messages
are likely in turn to be longer than messages for a goal or a plan’s cost (required by the
contract net approach), or initial state (centralized).
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Another functional difference is the degree of autonomy offered by an individual
rover with respect to possible replanning.  In the centralized planner approach, a failure
by a rover that cannot plan would require communication with the central planner before
resuming execution.  In the case of the distributed planning or contract net approach, if
the failure could be planned around locally by the failing rover, such communication
would not be necessary.

We have conducted empirical tests of these approaches in which we evaluated a
number of statistics:
• Number of goals achieved (max of 12 per iteration)
• Average distance traveled per goal achieved; and
• Computation  time to generate plans (sum and makespan).

Planning time was calculated in two modes for distributed planning approach and the
contract net protocol approach.  One mode utilized make-span where it was assumed
these methods could be run using parallel processors.  The other mode utilized
cumulative planning time; thus for the distributed planning approach planning time for
the master and each rover is summed and for the contract net approach, the time for each
auction summed.  Unfortunately, we do not discuss these empirical results here due to
space constraints.

RELATED WORK

While there is a large literature on cooperating robots, most of it focuses on behavioral
approaches that do not explicitly reason about partitioning goals and planning courses of
action.  Two notable exceptions are GRAMMPS (Bumitt & Stentz 1998) and MARS
(Fischer et al. 1995).  GRAMMPS is a system coordinating multiple mobile robots
visiting locations in cluttered partially-known environments.  This system shares quite a
bit similarity with our central goal allocation with distributed planning architecture.  They
both solve an MTSP problem to distribute targets, and they both have low level planners
on each mobile robot.  The difference involves our focusing on multiple resources and
exogenous events while their focus was on path planning while learning a terrain.  Also,
GRAMMPS uses simulated annealing where we use a greedy approach to solving the
MTSP problem.

MARS on the other hand is a cooperative transportation scheduling system that shares
many similarities with our contract net approach.  Once again the differences involve our
focus on multiple resources and exogenous events.  Also, the transportation agents bid
how much it costs to add a goal to its path.  This resulted in minimizing the total distance
traveled by all agents.  Our rovers bid the total path length after inserting the goal.  This
difference made our rovers spread out the goals to minimize the maximum distance
traveled by any one rover.  Finally, MARS also provides a “stock market” for secondary
auctions after the initial assignment of goals.  Including this facility while reasoning
about multiple resources is a future research direction.

CONCLUSIONS

This paper has described and evaluates three methods for coordinating multiple agents.
These agents interact in two ways.  First, they are able to work together to achieve a
common pool of goals which would require greater time to achieve by any one of the
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agents operating independently.  Second, the agents share resources that are required by
the actions required to accomplish the goals.  The first coordination method described is a
centralized scheme in which all of the coordination is done at a central location and the
agents have no autonomy at the planning level.  The second method performs goal
allocation using a centralized heuristic planner and (distributed) planners for the
individual agents perform detailed planning.  The third method uses a contract net
protocol to allocate goals and to (distributed) planners for the individual agents perform
detailed planning.  We compare these approaches and empirically evaluate them using a
geological science scenario in which multiple rovers are used to sample spectra of rocks
on Mars.
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